EC2314 DIGITAL SIGNAL PROCESSING

UNIT-I INTRODUCTION

Classification of systems: Continuous, discrete, linear, causal, stable, dynamic, recursive, time variance; classification of signals: continuous and discrete, energy and power; mathematical representation of signals; spectral density; sampling techniques, quantization, quantization error, Nyquist rate, aliasing effect. Digital signal representation.

UNIT- II DISCRETE TIME SYSTEM ANALYSIS

Z-transform and its properties, inverse z-transforms; difference equation – Solution by z transform, application to discrete systems - Stability analysis, frequency response – Convolution – Fourier transform of discrete sequence – Discrete Fourier series.

UNIT –III DISCRETE FOURIER TRANSFORM & COMPUTATION

DFT properties, magnitude and phase representation - Computation of DFT using FFT algorithm – DIT & DIF - FFT using radix 2 – Butterfly structure.

UNIT -IV DESIGN OF DIGITAL FILTERS

FIR & IIR filter realization – Parallel & cascade forms. FIR design: Windowing Techniques – Need and choice of windows – Linear phase characteristics. IIR design: Analog filter design -Butterworth and Chebyshev approximations; digital design using impulse invariant and bilinear transformation - Warping, prewarping – Frequency transformation.

UNIT –V DIGITAL SIGNAL PROCESSORS

Introduction – Architecture – Features – Addressing Formats – Functional modes - Introduction to Commercial Processors.

L = 45 T = 15 TOTAL = 60

TEXT BOOKS

- **1.** J.G. Proakis and D.G. Manolakis, 'Digital Signal Processing Principles, Algorithms and Applications', Pearson Education, New Delhi, 2003 / PHI.
- 2. S.K. Mitra, 'Digital Signal Processing A Computer Based Approach', Tata McGraw Hill, New Delhi, 2001.

REFERENCES

- **1.** B.Venkataramani,M.Bhaskar,'Digital Signal processors',-Architecture, programming & applications-2007.
- 2. S.Salivahanan, A.Vallavahan, C. Gnanapriya."Digital Signal processing",2008

9

L T P C 3 1 0 4

9

9

9

9

EC2314 DIGITAL SIGNAL PROCESSING

DESCRIPTION :

Signal processing is a technology that spans an vast spectrum of disciplines including entertainment, communication, robotics, space exploration, medicine, seismology, just to name a few. Sophisticated signal processing algorithms and hardware are prevalent in a wide range of systems, from highly specialized military systems through industrial applications to consumer electronics. The present course covers the concepts and techniques of modern digital signal processing which are fundamental to all the above applications. The course starts with a detailed overview of discrete-time signals and systems, representation of the systems by means of differential equations, and their analysis using Fourier and z-transforms. The sampling theory of continuous-time signals is explained next, followed by exploring the transform-based analysis of linear time-invariant (LTI) systems and their structures. Subsequently, the notion of discrete Fourier transform is introduced, followed by an overview of fast algorithms for its computation. The methods for spectral analysis of discrete-time signals are discussed next. Finally, principal methods for design of FIR and IIR filters are covered, followed by a discussion of their use for construction of filter banks as the first step into the theory of wavelet analysis. More detailed description of the course is available here. The course emphasizes understanding and implementations of theoretical concepts, methods and algorithms.

AIM

To introduce the concept of analyzing discrete time signals & systems in the time and frequency domain.

OBJECTIVES

- To classify signals and systems & their mathematical representation.
- To analyze the discrete time systems.
- To study various transformation techniques & their computation.
- To study about filters and their design for digital implementation.
- To study about a programmable digital signal processor & quantization effects.

Week	Hour	LECTURER TOPCS	Text/ Reference Books		
UNIT I –INTRODUCTION					
I	1	Classification of systems: discrete, linear, causal, stable.	R2		
	2	Dynamic, recursive, time variance systems	R2		
	3	Classifications of signals: continuous and discrete .	T1		
	4	Energy and power	T1		
	5	Mathematical representation of signals.(AV)	T1		
	6	Spectral density, Sampling techniques.	T1		
Π	7	Quantization, Quantization error.	T1		
	8	Nyquist rate, Aliasing effect.	T1		
	9	Digital Signal representation	T1		
	10,11,12	Problems	T1		
		UNIT II –DISCRETE TIME SYSTEM ANALYSIS	T		
III	13	Z-Transform and its properties	T1		
	14	Inverse z-transform	T1		
	15	Difference equation	T1		
	16	Solution by z-transform, Application to discrete systems	R2		
	17	Stability analysis(AV Class)	R2		
	18	Frequency response	R2		
IV	19	Convolution	R2		
	20	Fourier transform of discrete sequence	R2		
	21	Discrete Fourier series	R2		
	22,23,24	Problems	T1		
	UNIT III - DISCRETE FOURIER TRANSFORM & COMPUTATION				
V	25	DFT properties.	R2		

MICRO LESSON PLAN

	26,27		
	20,27	Magnitude and phase representation	R2
	28,29		
		Computation of DFT using FFT algorithm.	R2
	30	DIT	R2
	31		
VI		DIF	R2
	32		D2
	33	FFT using radix 2,	R2
	55	Butterfly structure. (AV),	R2
	34	Problems	
	35,36	Problems	T1
		UNIT IV –DESIGN OF DIGITAL FILTERS	1
VII	37	FIR& IIR filter realization, Parallel& Casade forms	R2
	38,39		<u>K2</u>
	50,57	FIR design, Windowing techniques, Need and choice of	D2
		windows	R2
	40		
		Linear phase characteristics.(AV), IIR design, Analog filter	R2
	41,42,43	design	
VIII	41,42,43	Butterworth& Chebyshev approximations	R2
	44		
		Digital design using impulse invariant, Bilinear	R2
		transformations	112
	45	Warping, Prewarping, Frequency transformation	R2
	46,47,48	Problems	T1
IX	10,17,10	UNIT V – DIGITAL SIGNAL PROCESSORS	
	49		
		Introduction	R1
	50		
	51.50	Architecture	R1
	51,52	Features	R1
V	53,54		
Х		Addressing formats	R1
	55		
VI	56	Functional modes	R1
XI	56	Introduction to commercial processors.(AV Class)	R1
	57		
		Introduction to commercial processors.(AV Class)	R1
	58,59,60	Problems	T1

Prepared by: Mrs. S.Malathi, Asst. Prof. / EEE.