# SARDAR RAJA COLLEGE OF ENGINEERING, ALANGULAM

### DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

## MICRO LESSON PLAN



Subject Code : EE - 81

Subject Name: ELECTRICAL ENERGY GENERATION, UTILIZATION

& CONSERVATION

Year & Semester: IV & VIII SEM

STAFF: Mrs. R.NAFEENA,

A.P/EEE

# EE81 ELECTRIC ENERGY GENERATION AND UTILISATION AND CONSERVATION

#### **1. POWER GENERATION**

Review of conventional methods – thermal, hydro and nuclear based power generation. Nonconventional methods of power generation – fuel cells – tidal waves – wind – geothermal – solar bio-mass - municipal waste. Cogeneration. Effect of distributed generation on power system operation.

#### 2. ECONOMIC ASPECTS OF GENERATION

Economic aspects of power generation – load and load duration curves – number and size of units – cost of electrical energy – tariff. Economics of power factor improvement – power capacitors – power quality. Importance of electrical energy conservation – methods – energy efficient equipments. Introduction to energy auditing.

#### **3. ILLUMINATION**

Importance of lighting – properties of good lighting scheme – laws of illumination – photometry - types of lamps – lighting calculations – basic design of illumination schemes for residential, commercial, street lighting, and sports ground – energy efficiency lamps.

#### 4. INDUSTRIAL HEATING AND WELDING

Role electric heating for industrial applications – resistance heating – induction heating – dielectric heating - electric arc furnaces Brief introduction to electric welding – welding generator, welding transformer and the characteristics.

#### **5. ELECTRIC TRACTION**

Merits of electric traction – requirements of electric traction system – supply systems – mechanics of train movement – traction motors and control – braking – recent trends in electric traction.

#### **TOTAL : 45 PERIODS**

#### **TEXT BOOKS**

1. C.L. Wadhwa, 'Generation, Distribution and Utilization of Electrical Energy', New Age International Pvt. Ltd, 2003.

2. B.R. Gupta, 'Generation of Electrical Energy', Eurasia Publishing House (P) Ltd, New Delhi, 2003.

#### REFERENCES

1. H. Partab, 'Art and Science of Utilisation of Electrical Energy', Dhanpat Rai and Co, New Delhi, 2004.

2. E. Openshaw Taylor, 'Utilization of Electrical Energy in SI Units', Orient Longman Pvt. Ltd, 2003.

3. J.B. Gupta, 'Utilization of Electric Power and Electric Traction', S.K.Kataria and Sons, 2002.

3003

LTPC

9

9

9

9

9

#### SUBJECT DESCRIPTION AND OBJECTIVES

#### DESCRIPTION

Electricity generation is the process of generating electric energy from other forms of energy. The fundamental principles of electricity generation were discovered during the 1820s and early 1830s by the British scientist Michael Faraday. His basic method is still used today. Electricity is generated by the movement of a loop of wire, or disc of copper between the poles of a magnet. For electric utilities, it is the first process in the delivery of electricity to consumers. The other processes, electricity transmission, distribution, and electrical power storage and recovery using pumped-storage methods are normally carried out by the electric power industry. Electricity is most often generated at a power station by electromechanical generators, primarily driven by heat engines fueled by chemical combustion or nuclear fission but also by other means such as the kinetic energy of flowing water and wind.

Indeed, life without electricity is now unimaginable. Electric power systems form the basic infrastructure of a country. Even as we read this, electrical energy is being produced at rates in excess of hundreds of giga-watts (1 GW = 1,000,000,000 W).

This subject reveals the knowledge of Power system by learning the milestones below

Features:

- Electrical Energy Resources
- Electric Heating
- Illumination
- Electric Traction
- Energy Conservation Techniques

#### AIM

To expose students to the main aspects of generation, utilization and conservation.

#### **OBJECTIVES**

To impart knowledge on

i. Generation of electrical power by conventional and non-conventional methods.

ii. Electrical energy conservation, energy auditing and power quality.

iii. Principle and design of illumination systems and methods of heating and welding.

- iv. Electric traction systems and their performance.
- v. Industrial applications of electric drives.

## MICRO LESSON PLAN

| HOURS                                   | LECTURE TOPICS                                                             | READING |  |
|-----------------------------------------|----------------------------------------------------------------------------|---------|--|
| UNIT I- POWER GENERATION                |                                                                            |         |  |
| 1,2                                     | Review of conventional methods – thermal, hydro                            | T2      |  |
| 3,4                                     | Nuclear based power generation                                             | T2      |  |
| 5                                       | Non-conventional methods of power generation – fuel<br>cells – tidal waves | T1      |  |
| 6                                       | Wind-Geothermal                                                            | T1      |  |
| 7                                       | Solar - bio-mass                                                           | T1      |  |
| 8                                       | Municipal waste.                                                           | T1      |  |
| 9                                       | Cogeneration. Effect of distributed generation on power system operation.  | T1      |  |
| UNIT II- ECONOMIC ASPECTS OF GENERATION |                                                                            |         |  |
| 10                                      | Economic aspects of power generation                                       | T1      |  |
| 11                                      | Load and load duration curves                                              | T1      |  |
| 12                                      | number and size of units                                                   | T1      |  |
| 13                                      | Cost of electrical energy – tariff.                                        | T1      |  |
| 14                                      | Economics of power factor improvement                                      | T1      |  |
| 15                                      | Power capacitors – power quality.                                          | T2      |  |
| 16                                      | Importance of electrical energy conservation methods                       | T2      |  |
| 17                                      | Energy efficient equipments.                                               | T2      |  |
| 18                                      | Introduction to energy auditing                                            | T2      |  |

|                                        | UNIT III- ILLUMINATION                                                                                  |    |  |
|----------------------------------------|---------------------------------------------------------------------------------------------------------|----|--|
| 19                                     | Importance of lighting – properties of good lighting scheme                                             | T1 |  |
| 20                                     | Laws of illumination - Photometry                                                                       | T1 |  |
| 21,22                                  | Types of lamps                                                                                          | T1 |  |
| 23                                     | Lighting calculation                                                                                    | T1 |  |
| 24-26                                  | Basic design of illumination schemes for residential, commercial<br>, street lighting and sports ground | T1 |  |
| 27                                     | Energy efficiency lamps                                                                                 | T1 |  |
| UNIT IV-INDUSTRIAL HEATING AND WELDING |                                                                                                         |    |  |
| 28                                     | Role electric Heating for industrial applications                                                       | T1 |  |
| 29                                     | Resistance heating                                                                                      | T1 |  |
| 30                                     | Induction heating                                                                                       | T1 |  |
| 31                                     | Dielectric heating                                                                                      | T1 |  |
| 32                                     | Electric arc furnace                                                                                    | T1 |  |
| 33                                     | Brief Introduction to electric welding                                                                  | T1 |  |
| 34                                     | Welding generator                                                                                       | T1 |  |
| 35,36                                  | Welding transformer and the characteristics                                                             | T1 |  |
| UNIT V- ELECTRIC TRACTION              |                                                                                                         |    |  |
| 37                                     | Merits of electric traction                                                                             | T1 |  |
| 38                                     | Requirements of electric traction                                                                       | T1 |  |
| 39                                     | Supply system                                                                                           | T1 |  |
| 40                                     | Mechanics of train movement                                                                             | T1 |  |
| 41,42                                  | Traction motor and control                                                                              | T1 |  |
| 43,44                                  | Braking                                                                                                 | T1 |  |
| 45                                     | Recent trends in electric traction                                                                      | T1 |  |