SARDAR RAJA COLLEGE OF ENGINEERING, ALANGULAM

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING MICRO LESSON PLAN

SUBJECT: POWER PLANT ENGINEERING

CODE : **EE 2252**

CLASS: II Year / IV SEM

Prepared By

I. Arul Doss Adaikalam

A.P/EEE

UNIT I THERMAL POWER PLANTS

12

Basic thermodynamic cycles, various components of steam power plant-layout-pulverized coal burners- Fluidized bed combustion-coal handling systems-ash handling systems- Forced draft and induced draft fans- Boilers-feed pumps-super heater- regenerator-condenser- dearearators-cooling tower.

UNIT II HYDRO ELECTRIC POWER PLANTS

12

Layout-dams-selection of water turbines-types-pumped storage hydel plants.

UNIT III NUCLEAR POWER PLANTS

12

Principles of nuclear energy- Fission reactions-nuclear reactor-nuclear power plants.

UNIT IV GAS AND DIESEL POWER PLANTS

12

Types, open and closed cycle gas turbine, work output & thermal efficiency, methods to improve performance-reheating, intercoolings, regeneration-advantage and disadvantages- Diesel engine power plant-component and layout.

UNIT V NON-CONVENTIONAL POWER GENERATION

12

Solar energy collectors, OTEC, wind power plants, tidal power plants and geothermal resources, fuel cell, MHD power generation-principle, thermoelectric power generation, thermionic power generation.

L = 45 T = 15 TOTAL = 60 PERIODS

TEXT BOOKS:

- 1. A Course in Power Plant Engineering by Arora and Domkundwar, Dhanpat Rai and Co.Pvt.Ltd., New Delhi.
- 2. Power Plant Engineering by P.K. Nag, Tata McGraw Hill, Second Edition, Fourth reprint 2003.

REFERENCES:

- 1. Power station Engineering and Economy by Bernhardt G.A.Skrotzki and William A. Vopat-Tata McGraw Hill Publishing Company Ltd., New Delhi, 20th reprint 2002.
- 2. An introduction to power plant technology by G.D. Rai-Khanna Publishers, Delhi- 110 005.
- 3. Power Plant Technology, M.M. El-Wakil McGraw Hill 1984.

SUBJECT DESCRIPTION AND OBJECTIVES

DESCRIPTION

To expose the students to basics of various power plants so that they will have the Comprehensive idea of power system operation.

The Power Plant's mandate continues to be a touchstone guiding our vision, goals and objectives. The Power Plant is Canada's leading public gallery devoted exclusively to contemporary visual art. It is a vital forum for the advanced artistic culture of our time that offers an exceptional facility and professional support to diverse living artists while engaging equally diverse audiences in their work. The Power Plant pursues its activities though exhibitions, publications and public programming. It fulfills its mandate by generating:

- exhibitions that represent the range of advanced practice in visual arts;
- publications that increase knowledge of contemporary art;
- lectures and symposia that encourage debate and further understanding;
- interpretative tools that invite visitors to question, explore and reflect upon their experiences;
- programming that incorporates other areas of culture when they intersect with visual art.

OBJECTIVE

• To become familiar with operation of various power plants.

MICRO LESSON PLAN

Hours	LECTURE TOPICS	READING
	UNIT I THERMAL POWER PLANT	S
1	Basic thermodynamic cycles	T2
2	Various components of steam power plant	T2
3	Layout	T2
4	Pulverized coal burners	T1
5	Fluidized bed combustion	T1
6	Coal handling systems	T1
7	Ash handling systems	T1
8	Forced draft and induced draft fans-	T1
9	Boilers	T1
10	Feed pumps	T1
11	Super heater- regenerator	T2
12	Condenser- dearearators-cooling tower	T1

13	Layout	T1	
14&15	Dams	T1	
16,17&18	Selection of water turbines	T1	
19,20&21	Types	T1	
22&23	Pumped storage hydel plants	T1	
24	Revision	T1	
UNIT III NUCLEAR POWER PLANTS			
25&26	Principles of nuclear energy	T2	
27,28&29	Fission reactions	T 2	
30,31&32	Nuclear reactor	T2	
33,34&35	Nuclear power plants	T2	
36	Revision	T2	
UNIT IV GAS AND DIESEL POWER PLANTS			
37	Types	T1	
38&39	Open and closed cycle gas turbine	T1	
40&41	Work output & thermal efficiency	T1	
42	Methods to improve performance	T1	
43	Reheating, inter cooling	T1	
44	Regeneration	T1	
45	Advantage and disadvantages	T1	
46	Diesel engine power plant	T1	
47&48	Component and layout	T1	
UNIT V NON-CONVENTIONAL POWER GENERATION			
49	Solar energy collectors	T1	
50	OTEC	T1	
51&52	Wind power plants	T1	
53&54	Tidal power plants	T1	
55	Geothermal resources	T1	
56	Fuel cell	T1	
57&58	MHD power generation-principle	T1	
59	Thermoelectric power generation	T1	
60	Thermionic power generation	T1	

Prepared By

I. Arul Doss Adaikalam

A.P/EEE